
CAPS Computing Boot Camp

Day 2 - Advanced Topics

Cynthia Trendafilova
Srinivasan Raghunathan

Outline
❏ Slurm documentation
❏ Additional HPC resources
❏ Parallelization example with

Python
❏ Astronomical data analysis

with Jupyter notebooks

Slurm Documentation

Full documentation of sbatch options and syntax, used when submitting jobs:
https://slurm.schedmd.com/sbatch.html

Important highlights:

● -t, --time=<time>
Set a limit on the total run time of the job allocation.
CAPS computing etiquette: maximum 24 hours duration per job.

● -d, --dependency=<dependency_list>
Require that this job does not start until the dependency
is met, e.g. job B will not start until job A has finished.

Slurm Documentation

We know how to submit jobs. How do we cancel jobs?
https://slurm.schedmd.com/scancel.html

● To cancel one job:
scancel <jobid>

● To cancel all the jobs for a user:
scancel -u <username>

● To cancel all the pending jobs for a user:
scancel -t PENDING -u <username>

Slurm Documentation

Full documentation of scontrol options and syntax, used to suspend/resume jobs:
https://slurm.schedmd.com/scontrol.html

Important highlights:

● suspend <job_list>
Suspend a running job.Use the resume command to resume its execution.

● resume <job_list>
Resume a previously suspended job.

Slurm Documentation

Full documentation of sacct options and syntax, used to retrieve information
about jobs:
https://slurm.schedmd.com/sacct.html

By default, sacct will only pull up jobs that were run on the current day.

● sacct --starttime=YYYY-MM-DD

You can see many details about your past and current jobs:

● sacct --starttime=YYYY-MM-DD --
format=jobid,jobname,nnodes,ncpus,elapsed,state

ICCP Documentation

Illinois Campus Cluster Program:
https://campuscluster.illinois.edu/resources/docs/

Many of these topics are being covered during this workshop. This website is a
very helpful resource!

Relocating Your .conda Directory to Project Space

From: https://campuscluster.illinois.edu/resources/docs/storage-and-data-guide/

Upcoming Workshops

NCSA hosts various computing workshops:
https://calendars.illinois.edu/list/7022

Remember

https://caps.ncsa.illinois.edu/get-involved/comp_res_camp_clus/caps-campus-
cluster-best-practices/

Bonus: dependency examples

This will start after job 8474910 terminates with ANY exit code:
#SBATCH -d afterany:8474910

This will start after job 8474910 terminates with OK exit code:
#SBATCH -d afterok:8474910

This will start after job 8474910 terminates with FAILED exit code:
#SBATCH -d afternotok:8474910

This will start if my user (ctrendaf) has no other job running with the same name
(thisIsMyJobName):

#SBATCH -J thisIsMyJobName
#SBATCH -d singleton

Parallelization

MPI - Message Passing Interface

● Industry standard for exchanging messages between multiple
cores/computers that are working on the same problem

Open MPI

● Open source MPI implementation

mpi4py - MPI for Python

● Provides Python bindings for the MPI standard

Parallelization

COMM: The communication "world" defined by MPI

RANK: an ID number given to each internal process to define communication

SIZE: total number of processes allocated

BROADCAST: One-to-many communication

SCATTER: One-to-many data distribution

GATHER: Many-to-one data distribution

Parallelization

mpi4py can be installed through Conda (which will install all dependencies,
including MPI). This may be fine on personal computers.

On an HPC cluster, however, it is best to use existing MPI modules on the cluster.

On some clusters, Conda mpi4py may not work at all, while on others it may work
but more slowly.

Parallelization - Python

Let’s create a new Conda environment for our mpi4py (and install numpy):

module load anaconda

conda create --name my-mpi4py python=3.8 numpy
conda activate my-mpi4py

Parallelization - Python

You can check all available modules on the Campus Cluster. Then, be sure to load
a matching version of a compiler (in this case, we’ll use gcc) and openmpi. For
example:

module list
module avail
module load gcc/7.2.0
module load openmpi/4.1.0-gcc-7.2.0
module list

Parallelization - Python

Set the loaded compiler to be used for installing mpi4py and check that this
variable was set correctly:

export MPICC=$(which mpicc)
echo $MPICC

You should see some output like:

/usr/local/mpi/rh7/openmpi/4.1.1/gcc/7.2.0/bin/mpicc

Parallelization - Python

Now, install mpi4py using pip:

python -m pip install mpi4py --no-cache-dir

And check if it worked:

python -c "import mpi4py"
python -c "from mpi4py import MPI"

Both commands should produce no error messages.

Parallelization - Python

Let’s run a simple script to test our mpi4py installation and see how tasks are
assigned to different nodes!

mkdir myScripts
cd myScripts
touch hello_mpi.py
vim hello_mpi.py

Press a to enter INSERT mode, then write your code (next slide).

Parallelization - Python

When finished, press ESC, then type :wq (write+quit) and hit
ENTER.

Vi editor

Hit Esc+U to undo the edits.

Hit Esc+q! to quit w/o saving (incase of many wrong edits).

Hit Esc+w to save w/o quitting.

Hit Esc+n to search for a character (forward). Use Esc+N for
backward.

Use \[...] for special characters.

Parallelization - Python

Let’s copy the sbatch file to submit the job to Slurm:

cp /home/ctrendaf/scratch/teaching/run_hello.sbatch .

Parallelization - Python

Now submit it:

sbatch run_hello.sbatch

View the resulting output file with:

cat 0101010-output.txt

It should look like this:

Hello World! I am process 0 of 4 on ccc0344.campuscluster.illinois.edu.
Hello World! I am process 1 of 4 on ccc0344.campuscluster.illinois.edu.
Hello World! I am process 2 of 4 on ccc0344.campuscluster.illinois.edu.
Hello World! I am process 3 of 4 on ccc0344.campuscluster.illinois.edu.

Parallelization - Python

Try changing the number of tasks:

#SBATCH --ntasks=7 # total number of tasks

What does your output look like?

Try also changing the number of nodes:

#SBATCH --nodes=2 # node count

What does your output look like?

Parallelization - Python

What if we want to control how many processes are distributed on each node?
Then we must specify the number of tasks per node:

#SBATCH --ntasks=4 # total number of tasks
#SBATCH --nodes=2 # node count
#SBATCH --ntasks-per-node=2 # Number of tasks per

node

What does your output look like?

Parallelization - Python

This example will perform some
simple arithmetic on each node, then
GATHER the results from all nodes.

Copy the file add_mpi.py:

cp /home/ctrendaf/
scratch/teaching/
add_mpi.py .

Try running this with 4 total tasks.

Parallelization - Python

We can write the data from each node to disk and load it once from node 0,
instead of using GATHER.

Try adding these lines to your code:

Jupyter

Astronomical Data Analysis with Jupyter Notebooks

Jupyter

● Connect to https://jupyter.ncsa.illinois.edu/ [info] with your campuscluster
credentials.

● Open a notebook and type:
○ import numpy as np

■ You will most likely get an error message “ModuleNotFoundError: No module named 'numpy’”

○ Within the Jupyter notebook, you also have an option to open the “terminal”

Jupyter

● Now install the necessary modules:
○ pip install numpy
○ pip install matplotlib
○ pip install scipy
○ pip install astropy
○ pip install pandas

More advanced

○ pip install healpy
○ pip install camb

● https://github.com/sriniraghunathan/cosmology_school
○ https://github.com/sriniraghunathan/cosmology_school/blob/main/caps_computing_bootcamp.ipynb

Happy computing!

https://forms.gle/GeBgSgTLknkd8F3s6

