Menu Close
 

Welcome! The Center for AstroPhysical Surveys (CAPS) seminars are normally held on Friday’s at noon central time in room 1040 at NCSA. Pizzas and sodas will be arranged. Please contact the current seminar organiser Srinivasan Raghunathan for further details.

Location: NCSA-1040(Unless specified otherwise)
Zoom: Link

Date / Location Speaker Affiliation Title Slides
Upcoming
Dec 02, 2022
12 p.m. Central
NCSA, 1030
Lizhong Zhang University of California Santa Barbara
TBA
    –
Nov 18, 2022
12 p.m. Central
NCSA, 1040
Dr. Ritoban Basu Thakur Caltech
TBA
    –
Nov 11, 2022
12 p.m. Central
NCSA, 1040
Dr. Nicholas Battaglia Cornell University
TBA
    –
Oct 28, 2022
12 p.m. Central
NCSA, 1030
Dr. Yue Shen University of Illinois at Urbana-Champaign
TBA
    –
Oct 21, 2022
12 p.m. Central
NCSA, 1040
Dr. Charles Steinhardt University of Copenhagen
TBA
    –
Oct 14, 2022
12 p.m. Central
NCSA, 3100
Melanie Archipley Department of Astronomy, University of Illinois Urbana-Champaign
TBA
    –
Oct 14, 2022
12 p.m. Central
NCSA, 3100
Kedar Phadke Department of Astronomy, University of Illinois Urbana-Champaign
TBA
    –
Oct 07, 2022
12 p.m. Central
NCSA, 1040
Dr. Joel Meyers Southern Methodist University
TBA
    –
Past
Sep 16, 2022
12 p.m. Central
NCSA, 3100
Dr. Adam Anderson Fermi Lab
Millimeter-wavelength cosmological surveys require focal planes with increasingly vast numbers of detectors in order to access new science using the CMB and emerging probes such as mm-wave line intensity mapping (LIM). Highly multiplexed kinetic inductance detectors (KIDs), arrayed as both on-chip spectrometers and wide-band photometers, provide a promising solution to these scaling challenges. I will present two new projects deploying these technologies for observations with the South Pole Telescope. SPT-SLIM is a pathfinder camera to demonstrate LIM with the CO rotational lines using on-chip spectrometers. SPT-3G+ is a camera that will measure the CMB at 220, 285, 345 GHz with diverse science goals spanning reionization history and the patchy kinematic Sunyaev-Zeldovich effect, Rayleigh scattering, and sub-millimeter sources. I will discuss both our ongoing technology development as well as the science targets of these cameras.
Aug 26, 2022
12 p.m. Central
NCSA, 3100
Dr. Anita Nikolich School of Information Sciences, University of Illinois Urbana-Champaign
Why is it so easy to watch funny cat videos but so hard to send science data? It’s because the Internet is broken! FABRIC is a midscale, International NSF project (a testbed) that enables researchers and practitioners to re-imagine a future, better Internet by enabling exploratory research in (among other things) networking, security, storage, distributed computing and machine learning. Multiple science communities are driving the first experiments on FABRIC. I’ll talk about the basic architecture of FABRIC, give a high level overview of some current experiments, and try to convince you that we can build an Internet that is good for science.
June 10, 2022
12 p.m. Central
NCSA, 2100
Prof. Raul Jimenez ICREA and University of Barcelona
Astronomical Surveys have brought us a major advance in our understanding of the Universe and its physical laws. All observations in the sky can be described by the standard model of cosmology with just six free parameters. However, description is not the same as understanding. Despite the phenomenal progress of astronomical surveys, only. Few percentage of the sky has been surveys. Future and ongoing surveys will aim at surveying most of the sky. This rich dataset will provide us with the tools to understand the sky, rather than describe it. In this talk I will review the current status of our understanding of the Universe, the status of the “tensions” and will present new results about the nature of the energy components of the universe: dark matter and dark energy, and also about how the Universe might have originated and evolved.
June 03, 2022
12 p.m. Central
NCSA, 2100
Colin Burke Department of Astronomy, University of Illinois Urbana-Champaign
Optical variability is a key probe of the AGN population that will be instrumental for studies of AGN demographics with LSST Rubin. We have developed a phenomenological forward model that generates a mock AGN and host galaxy population and simulates light curves given the survey specifications as input. In this talk, I will show how our model can be used to constrain the local black hole mass function (BHMF) using optical variability with LSST Rubin. The ultimate goal is that this relic BHMF, when probed at low masses, will reveal the signature of how supermassive black holes were seeded at high redshifts.
    –
June 03, 2022
12 p.m. Central
NCSA, 2100
Patrick Aleo Department of Astronomy, University of Illinois Urbana-Champaign
We present the Young Supernova Experiment (YSE) first data release, spanning discoveries from November 24th, 2019 to December 20, 2021. YSE is an active, three year optical time-domain survey on the Pan-STARRS1 and Pan-STARRS2 telescopes, designed to capture young, fast-rising supernovae (SNe) within a few hours to days of explosion. This YSE DR1 includes light curves and metadata for 2008 supernova-like sources, of which 441 transients are spectroscopically-classified. We then uniquely use realistic, multi-survey SNe simulations from YSE and Zwicky Transient Facility (ZTF) data to train the ParSNIP classifier for photometric classification tasks; when validating on spectroscopically-classified YSE SNe, we achieve 82% accuracy across three SN classes (SN Ia, SN II, SN Ibc) and 90% accuracy across two SN classes (SN Ia, CC SNe), with high individual completeness and purity of SN Ia. We then use our classifier to characterize our spectroscopically unclassified sample of 1567 YSE SNe, predicting ~66% SN Ia, ~34% CC SNe. We find that realistic simulations are now sufficient to exclusively train current photometric classification methods without compromising performance on real data. Though, our classifiers have particular difficulty in characterizing transients near the cores of galaxies or exhibit rare photometric or spectral features. In preparation for the forthcoming Rubin Observatory era, griz data sets such as the one presented here will be an important component of building classification and discovery algorithms for transient discovery.
    –
May 27, 2022
12 p.m. Central
NCSA, 2100
Dr. Francisco Förster Burón Universidad de Chile
A new generation of survey telescopes is allowing us to explore large volumes of the Universe in an unprecedented fashion, detecting and reporting up to tens of millions of varying objects in the sky every night. This requires fast machine learning aided discovery and classification systems, the astronomical brokers. The Automatic Learning for the Rapid Classification of Events (ALeRCE) broker is processing the alert stream from the Zwicky Transient Facility (ZTF), will soon start to process the Asteroid Terrestrial-impact Last Alert System (ATLAS) alert stream, and is an official Community Broker for the Legacy Survey of Space and Time (LSST). Since 2019, we use cloud infrastructure and machine learning to bring real-time processed products and services to the astronomical community, becoming the first public broker to systematically classify the ZTF alert stream into an astrophysically motivated taxonomy, ingesting more than 250 million alerts, classifying about 69 million objects based on their images, 1.6 objects based on their light curves, and reporting more than 13 k supernova candidates, 1.6 k of them resulting in spectroscopic classifications. In this talk I will summarize the available services (e.g., web explorer, SN hunter, data releases, watchlist) that can be used by the scientific community.
May 20, 2022
12 p.m. Central
NCSA, 2100
Adina Feinstein University of Chicago
All-sky photometric time-series exoplanet missions have allowed for the monitoring of hundreds of thousands of stars, allowing for statistical analyses of stellar properties, specifically activity, across the Hertzsprung-Russell diagram. In this talk, I will discuss the convolutional neural network (CNN), stella, specifically trained to find flares in TESS short-cadence data. I will present the results of the CNN applied to 3200 young (< 1 Gyr) stars in order to evaluate flare rates as a function of age and mass. Additionally, we measure rotation periods for 1500 of our targets. The combination of flare rates and rotation periods allowed us to investigate surface starspot coverage as well as develop analytical models for magnetic field braiding to interpret differences in flare frequency distributions (FFDs). The efficiency and accuracy of the CNN allows for rapid flare detection on all stars observed at 2-minute cadence. Towards the end of my talk, I will present FFDs for 10^5 stars observed during TESS’s primary mission. By fitting the FFD for different mass bins, we find that all stars exhibit distributions of flaring events indicative of a self-organized critical state. This suggests that magnetic reconnection events maintain the topology of the coronal magnetic fields in a self-organized critical state in all stars, universally. If this is true, we will be able to infer properties of magnetic fields, interior structure, and dynamo mechanisms for all stars, which are otherwise unresolved point sources.
    –
May 06, 2022
12 p.m. Central
NCSA, 2100
Dr. Burçin Mutlu-Pakdil University of Chicago
The smallest and faintest galaxies around the Milky Way are the most ancient, most metal-poor, and most dark-matter-dominated systems known. These extreme objects offer unique access to small scales where the stellar and dark matter content can be studied simultaneously. They hold the promise of major breakthroughs in understanding the nature of dark matter and a more complete picture of galaxy formation. Thus, their discovery and characterization are among the most important goals in the field. In this talk, I will share our ongoing observational efforts to detect these faint systems around the Milky Way and beyond, and upcoming advances in the era of deep and wide imaging instrumentation, with a focus on their implications.
    –